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Research to elucidate the cause for the robustness and expediency of biopolymer 
folding processes calls for a new scheme of statistical inference whereby statisti- 
cal weights are directly assigned to folding pathways themselves. Such a scheme 
stands in contrast with traditional methods built upon a Boltzmann measure 
over conformation space. A rigorous result paving the way for such an approach 
is presented in this work, where it is proven that an appropriate measure may 
be defined over the space of folding pathways. Since a space endowed with a 
measure constitutes an ensemble, this work could be viewed as a starting point 
to construct a statistical mechanics of folding pathways. 
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1. T O W A R D  A N E W  S C H E M E  OF STATISTICAL INFERENCE 
SUITABLE FOR P O L Y M E R  FOLDING 

The  scarci ty  of  theore t ica l  a p p r o a c h e s  to expla in  the robus tness  and  

expediency  wi th  which  a b i o p o l y m e r  cha in  finds its act ive folding is 
apparen t ,  as recent  research  suggests. ~1-5~ F o r  instance,  s tat is t ical  mechan i -  

cal m e t h o d s  based  u p o n  the cons t ruc t i on  o f  a B o l t z m a n n  measu re  over  

c o n f o r m a t i o n  space (6) c a n n o t  accoun t  for the fact that  the act ive  s t ruc ture  

is fo rmed  exped i t ious ly  unde r  severe t ime const ra ints .  This  is especial ly so 

since such cons t ra in t s  force the cha in  to c i r cumven t  the Levin tha l - l ike  
scenar io /7)  T h a t  is, searching  for the mos t  s table folding by means  o f  a ran-  

d o m  search in c o n f o r m a t i o n  space w o u l d  t ake  as long  as the age of  the 
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universe and thus the applicability of a thermodynamic approach to predict 
structures becomes questionable. 

Rather, recent evidence ct'2'8-1~ prompts us to attempt to introduce a 
measure q on the space of  folding pathways itself. A folding pathway will be 
defined simply as a polymer conformation changing in time. Thus, by 
endowing the space of folding pathways with an appropriate measure, we 
would have defined an ensemble and thus paved the way for a statistical 
mechanics of folding pathways. 

Let us now illustrate how statistical inferences could be made using 
the statistical mechanics of folding pathays. In the context of RNA 
catalysis, recent experimental evidence tS~ and computer simulations 19"1~ 
show that RNA cyclization at an internal position and RNA self-splicing 
are two competing processes pervasive in ribozyme function governed by 
two different bundles of competing folding pathways. 

Thus, a theoretical approach rooted in the construction of a measure 
q should encompass the evaluation of integrals of the form 

Pr(A) = fA dq(,9) (1) 

where a generic notation has been adopted in which ,9 denotes any folding 
pathway and Pr(A) indicates the probability of an event A which is 
realized by an q-measurable bunch (an open set in a suitable topology) A 
of folding pathways. In the context of ribozyme function, the event A might 
either be internal cyclization or RNA self-splicing. 

In view of these considerations, the purview of this work is bound to 
be limited and rigorous at the same time: We shall establish that, subject- 
ing the folding process to very general restrictions, a measure q exists over 
the space of folding pathways. Moreover, such a measure can be defined 
constructively based on the stochastic process whose realizations constitute 
the folding pathways themselves. 

2. DESCRIBING THE SPACE OF FOLDING P A T H W A Y S  

We consider a polymer chain made up of N monomeric units whose 
conformation is defined by M(N) degrees of freedom. Each of these internal 
variables corresponds to a dihedral angle representing rotation around a 
specific bond. Such bonds might be part of the backbone chain, like those 
forming the sugar-phosphate backbone of RNA, or might be inherent only 
to the internal conformation of each residue, such as the glycosidic 
base-sugar bond of an RNA nucleotide, c6~ Since vibrational degrees of 
freedom equilibrate on far shorter time scales than rotational ones, it has 
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been rightly assumed that rotational internal variables suffice to specify a 
polymer conformation. 16) 

Thus, we may consider in principle a conformation space X which, 
given the angular nature of the degrees of freedom that specify a conforma- 
tion, constitutes a torus of dimension M(N): 

X =  M(N)-torus (2) 

A folding pathway becomes a trajectory on X defined by a map 
0: I ~ X, where I denotes a time interval. In the physically unrealistic case 
of an infinitely slow pathway made up of successively equilibrated states, 
the trajectory is determined entirely by thermodynamic or stability control. 
This means that the trajectory is tangent a point x to the vector field 
�9 (x) = -g radx  U(x), where U(x) is the potential energy functional. This 
potential in turn determines the Boltzmann measure on X, the object upon 
which classical methods of statistical inference are based. ~6~ 

In a more realistic context, the search in conformation space obeys a 
stochastic process ~: X x I ~ X. This map defines a family of curves or tra- 
jectories ~x: I--* X, the realizations of the process, each one indexed by a 
starting or initial conformation x in X. This process must be particularly 
robust since only a small assortment of destination structures occur 
reproducibly regardless of the initial state and perturbations of the folding 
pathways? 4.5.91 

In accord with the introductory discussion, we shall focus on devising a 
proper scheme that will allow us to assign weights to folding pathways them- 
selves. Thus, we need to introduce a proper space O containing all trajec- 
tories in X, define its topology ~(O),  and, finally, endow it with a measure 
q induced by the stochastic process ~: X x I ~ X which generates the trajec- 
tories. 

Let Z(X) be the topology on X induced by the metric topology 
3;(9t M~m) of ~Mtm (9~ are the real numbers), the space in which X is 
embedded. That is, 

~(X) = { A n  X; A E ~(9~MIm)} (3) 

Let us define now a product topological space of copies or replicas of X 
which contains in principle all continuous and discontinuous folding 
pathways with associated time span I/l: 

/2 = 1-[ X,; X -  X, for all t (4) 
t e l  

Thus, s = O, where O = C(I--* X) is the space of continuous maps of 
the interval I on X. This space O is endowed with the topology 3;(0) 
inherited from the product topology I-I,EzX(X,) of g2. Moreover, O is 
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naturally endowed with a measure p induced by the product Boltzmann 
measure PrB = I'-I,~zPB., (PB., is the Boltzmann measure on the replica X, 
of conformation space) defined on ~( I - I ,~zZ(x , ) ) ,  the minimal sigma 
algebra of sets generated by the product topology. 

For every x e X, let ~x e O be a specific realization of the stochastic 
process 3: X x  I ~  .t". This realization represents a specific folding pathway 
with associated time span [II starting with conformation x at t = 0. The 
collection of such realizations constitutes a subset ( ( X ) =  {~., e O, x e X} of 
O which is comprised of all the folding pathways that are determined by 
the generating rules that define the stochastic process ~.~4.91 

It is not the aim of this work to actually specialize the map to any 
specific folding process, t4'5"91 It suffices to indicate that in the specific case 
where folding operates under time constraints and kinetic control governs 
the folding pathways, a realization ~x may be defined and simulated com- 
putationally by means of the following general Markov process: 

For each time te l ,  we define a map t ~ J ( x ,  t ) =  {j: 1 <~j<~n(x, t)}, 
where J(x, t ) =  collection of elementary events representing conformational 
changes which are feasible at time t given that the initial conformation x 
has been chosen at time t = 0, and n(x, t) = number of possible elementary 
events at time t. Associated to each event there is a unimolecular rate con- 
stant kj(x, t) = rate constant for the j t h  event in J(x, t), t4) which may take 
place at time t for a process that starts with conformation x. The mean 
time for an elementary refolding event is the reciprocal of its unimolecular 
rate constant. Thus, the only elementary, events allowed are elementary 
refolding events that satisfy kj(x, t)-L<~ III. 

At this point we may define the Markov process by introducing a ran- 
dom variable r e  [0, ~,~i'~kj(x, t)] whose probability of taking any par- 
ticular value of the interval is the reciprocal of the length of the interval. 
Let r* be a realization of r, that is, a chosen value of r, such that if 

j *  - -  1 j *  

~. kj(x, t) < r* <~ ~, kj(x, t) 
j = o  j = o  (5) 

ko(x, t ) =  0 for any x, t 

then the event j * =  j*(x, t) is chosen at time t for the folding process that 
starts with conformation x. That is, we have partitioned the interval by 
adding progressively one rate constant at a time. Obviously, the largest 
rate constant will produce the largest subinterval in the partition, and thus 
the choice of r will have the highest probability of falling in that particular 
subinterval. Thus the map t ~  j*(x ,  t) for fixed initial condition x con- 
stitutes a realization of the Markov process which unambiguously deter- 
mines the trajectory ~x. 
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3. THE EXISTENCE OF A MEASURE ON THE SPACE OF 
FOLDING PATHWAYS 

At this point we shall formulate and prove the following result: 

Theorem.  The stochastic process ( indexed by a starting conforma- 
tion x ~ X induces a measure r /on O which satisfies the relation 

P1A = IA X~r dla(~) (6) 

where p = measure in O induced by the product Boltzmann measure, as 
defined in Section 2; Xe(x+(,9) = 1 if there exists x ~ X such that o a = ~x, and 
Xr = 0 otherwise. 

In precise terms, the p-measurable function Xe(Jo is the Radon-Nikodym 
derivative of q with respect to I a. 

Proof. The space X is compact when endowed with topology ~(X); 
thus, by Tikhonov's theorem,/2 is compact with the product topology, and 
O is also compact when endowed with the topology inherited from the 
product topology. Since O is also Hausdorff, we shall apply the 
Riesz-Markov representation theorem. ( ~  Consider the space of con- 
tinuous functionals C(O); then, given a functional F in the dual space 
C(O)*, there exists a measure r /on O such that 

F(h) = Ie h(~) dq(~) for any h in C(O) (7) 

Since there are no restrictions on F, we take 

F(h) = fxh(~x) dl~B(x) (8) 

Thus, we have shown that q is induced by the stochastic process 4. 
The measure q may be constructed as follows: Let A e Z(O); then we 

define its measure as 

r/A = Sup{ F(h), 0 <~ h <~ 1, h e C(O), A ~ support(h)} (9) 

This real functional defined on open sets may be canonically extended to 
a regular measure over ~3(I-I,~lTs n O). r 

Consider now the set D(A) of functionals f (0)  of the form 

f(,9) = { fIX~,r f (  t) exp[ -flU(ztt~9) ] dt } 

• {Ill IxeXp[-flU(x)]6x} -' (10) 

822/77/5-6-9 
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where n,: 12--* X, is the canonical projection; f l - - l / k a T  (T is the tem- 
perature, kB the Boltzmann constant); 0 <~f(t)~< 1 is any continuous real 
function; Z,,tA> is the characteristic function of the projection of A on the 
replica X,; and 6x is the differential volume in conformation space X. 

The set D(A ) is dense in G(A ) = { 0 ~< h ~< I, h �9 C(O), A D support(h) }. 
Therefore we have 

qA = Sup{F(h), h �9 D(A)} (11) 

This equation enables us to compute the measure of A, thus verifying 
Eq. (6): 

qA={~xf X,,,A,(n,~.Oexp[-flU(n,r } 

x {1II fxexp[-flU(x)]6x}-' 

=IAXr ) (12) 

To avoid confusion, the reader should be reminded that / t  is induced 
by the product Boltzmann measure PrB = ]--I,~I/~B., (/LB., is the Boltzmann 
measure on the replica X,). The result given in Eq. (12) results by replacing 
the set G(A) by the set D(A) in the definition given by Eq. (9), a valid pro- 
cedure since any functional in G(A) is the limit of a sequence of functionals 
in D(A). 

This completes the proof of the theorem. QED 
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